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Abstract

We use some ‘natural’ language operations, such as shuffle (scattered insertion) and scattered deletion to model
noisy channels, that is, nondeterministic processes transforming words to words. In this spirit, we also introduce
the operation of scattered substitution and derive the closure properties of the language families in the Chomsky
hierarchy under this operation. Moreover, we consider a certain type of language inequations involving language
operations and observe that, by varying the parameters of such an inequation, we can define families of codes suct
as prefix and infix, as well as families of error-detecting languages. Our results on this type of inequations include
a characterization of the maximal solutions, which provides a uniform method for deciding whether a given regular
code of the type defined by the inequation is maximal.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Language operations; Language inequations; Closure properties; Maximal codes; Error detection

1. Introduction

Language operations, such as catenation, shuffle (scattered insertion) and scattered deletion, have been
classical topic of study in formal language theory. In particular, the closure properties of language families
in the Chomsky hierarchy under such operations are one of the central themes in thitBe@rivore
recently, also the topic of language equations involving language operations other than catenation has

* Research partially supported by Grants R2824A01 and R220259 of the Natural Sciences and Engineering Research Council
of Canada.
* Corresponding author.
E-mail addressedila@csd.uwo.cqL. Kari), stavros@cs.stmarys,cakonstantinidis@stmarys.¢a. Konstantinidis).

0022-0000/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2004.08.005


http://www.elsevier.com/locate/jcss
mailto:lila@csd.uwo.ca
mailto:stavros@cs.stmarys.ca
mailto:s.konstantinidis@stmarys.ca

158 L. Kari, S. Konstantinidis / Journal of Computer and System Sciences 70 (2005) 157-178

been of interesf8,9] (see[2] for language equations involving the catenation operation). In this work,

we observe that certain language operations—in particular shuffle and scattered deletion—can be used tc
model noisy channels (in the sens¢ldf]). In this spirit we introduce another ‘natural’ language operation,

the operation of scattered substitution, and derive the closure properties of the language families in the
Chomsky hierarchy under this operation. We also observe that a certain type of language inequations can
be used to define code-related properties of languages. More specifically, consider the inequation

XSL C XS with X € M, *)

whereX is the unknown languagg© is the complement aoX, L andM are fixed languages, argis a
binary language operation. Depending on the choigk, &f andM, the solution set of such an inequation
could be the family of all prefix codes, hypercodes, infix codes, etc[§$der such families of codes).
Moreover, the paif<>, L) can be used to define a noisy channel, which we denofe&hy]. With this
interpretation, the solution set of the inequation is the set of all languages that are error-detecting for the
channel[<$L,]. Following certain ideas if8,9] about language equations, we obtain a characterization of
the maximal solutions of the inequati¢s), when(x) is of type (c)—see Sectioh This yields a method
for deciding whether a given regular code of the type defined by the inequation is maximal. We note that
uniform methods for deciding code-related properties of regular languages have been consj@eted in
However, to our knowledge, there is no analogous uniform method for deciding the maximality property.
The paper is structured as follows. In the next section we provide the basic notation and background
about formal languages, binary relations, word operations, language equations and error-detection. In
Section 3 we give examples to demonstrate that certain code-related properties are definable via language
inequations of typéx). For the case of error-detection properties we need the concept of noisy channel.
We show how to model certain channels using language operations in Section 4. In Section 5, we study
the closure properties of language families in the Chomsky hierarchy under the operations involved
in modelling channels with substitution errors. In Section 6 we point out the connection between error-
detecting languages and the solutions of the above inequation and establish basic results about the maxima
solutions of this inequation. When the inequation is of type (c) we obtain a necessary and sufficient
condition for whether a given solution is maximal—see Corollary In the last section we discuss
some special cases and applications of our results. In particular, we show that (i) for certain inequations
with finitely many maximal solutions there is a method for obtaining those solutions; (ii) the problem of
whether the inequation has a solution of at ldesfements, for some givdq is NP-complete; (i) there
are simple and efficient algorithms for deciding whether a given regular prefix code, or finite bifix code,
or finite infix code, or fixed-length 1-error-detecting code is maximal.

2. Definitions, notations and background
2.1. Alphabet, word, language, automaton, binary relation
An alphabets a finite and nonempty set of symbols. In the sequel we shall use a fixed alphahet

set of all words (over) is denoted by*. This set includes thempty wordi. The length of a wordv is
denoted byw|. For a nonnegative integaand a wordv, we usew” to denote the word that consistsrof



L. Kari, S. Konstantinidis / Journal of Computer and System Sciences 70 (2005) 157-178 159

concatenated copieswf TheHamming distancé? (u, v) between two worde andv of the same length
is the number of corresponding positions in whicandyv differ. For exampleH (abba, aaaa) = 2.

A languagel is a set of words, or equivalently a subset’dt A language is said to befree if it
does not contain the empty word. For a langubgee write L, to denotel. U {/}. If nis a nonnegative
integer, we writeL” for the language consisting of all words of the fowm - - - w, such that each;
is in L. We also writeL* for the language.’ U L1 U L2 U - .. and L™ for the languagd.* — {1}. The
notationL¢ represents the complement of the languiagbat is,L< = >* — L. For the classes of regular,
context-free, and context sensitive languages, we use the notations REG, CF and CS, respectively.

A nondeterministic finite automaton witlproductions (or transitions) jaNFAfor short, is a quintuple
A = (S, 2, s0, F, P) such thaSis the finite and nonempty set of statesis the start state; is the set of
final states, an® is the set of productions of the forsw — ¢, wheresandt are states il$, andxis either
a symbol inX or the empty word. If there is no production with= 2, the automaton is called aMFA.

If for every two productions of the formw; — #1 andsx> — ro of an NFA we have that; # x» then

the automaton is called@FA (deterministic finite automaton). The language accepted by the automaton
Ais denoted by (A). The automaton is callegdm if every state is reachable from the start state and can
reach afinal state iR (whenF # ). Thesize|A| of the automator\ is the numbefS| + | P|. Note that

the numbetf S| of states of a trim automaton is at most1P|; therefore, the size of such an automaton
is|Al = ©(P]).

A finite transduce(in standard form) is a sextuple = (S, X, 2’, so, F, P) such that’ is the output
alphabet, the componer$ssg, F are as in the case ¢fNFAs, and the s&® consists of productions of
the formsx — yr wheres andt are states irf§ x € X U {i} andy € 2" U {4}. If x is nonempty for
every production then the transducer is callegken(generalized sequential machine). If, in addition,
y is nonempty for every production then the transducer is calledree gsm Therelation realized by
the transducer is denoted byR (7). The concept of a trim transducer is the same as that in the case of
automata. The siz"| of the transducef (in standard form) i$S| + | P|. Again, when the transducer is
trim its size is|T| = @(| P)).

A binary relationy, say, over is a subset of* x ~*. Thedomainof y, denoted dongy), is the set of all
wordsu such thalu, v) is iny for some words. We shall use the notatiafu) for the set{v | (u, v) € y}.
This notation is extended to languadeas follows:y(L) = U,ery(u). The symbol~! represents the
inverse of the relation, which is equal tq (v, u) | (u, v) € y}. Thecompositiony; o y, of two binary
relationsy; andy, is the binary relatiori(u, v) | (1, z) € y» and(z, v) € y;, for some word:}. A relation
is calledrational if it can be realized by a finite transducer.

We refer the reader fd.4] or [16] for details on automata and formal languages.

2.2. Binary word operations

A binary word operation is a mappiry: >* x 2* — 2° where 2" is the set of all subsets aft. The
domainof <, denoted don<>), is the set of all pairsu, v) of words such that the set>v is not empty.
Theleft domainof < is dom1(<>) = {u : (4, v) € dom(<) for some wordv}. Similarly, theright domain
of &is domy(<X) = {v @ (u, v) € dom(<$) for some word:}. Theimageof <> isim (&) = U, e+ uv.
Thecharacteristic relatiorof <> is

Co ={(w,u,v) : w e udv}.
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Forany languagesandY, XY = U, cx. pey #<v. Itshould be noted that every subBaf X* x X* x X*
defines a unique binary word operation whose characteristic relation is eBactly
Definition 2.1 (Kari [8]). Let<> be an operation. The left inverse of <> is defined as
w e (xov) iff x € (wolv), forallv, x, w € =%,
and the right inverse” of <> is defined as
w e woy) iff y e S w), forallu, y,w € 2*.

Definition 2.2. Let <> be a binary word operation. The word operatiohdefined byu<’v = vu is
calledreversed®.

It should be clear that, for every binary operatiprthe triple(w, u, v) isin C if and only if (u, w, v)
is in C if and only if (v, u, w) is in Cor if and only if (w, v, u) is in Cy . If x andy are symbols in
{{, r,’ }, the notationr>*” represents the operatio®*)”. Using the above observations, one can establish
identities between operations of the fots¥. For exampled!! = & = &' = Gando! = o7 = oI",

Next we list a few binary word operations together with their left and right invdis8%

Catenation! u - v = {uv}, with ! = —,, and” = —,.
Left quotientuy —;, v = {w} if u = vw, with —>§q =/ and—>l’q = —>q.
Right quotientuy — ,, v = {w} if u = wv, with —>qu = -and—, = — 4.

Insertion u <— v = {uqvus | u = uqus}, with «—! = — and«—" = =/,

Deletion u —> v = {uquz | u = ugvus}, with —! = «— and—" = =.

Dipolar deletion u = v = {w | u = viwvy, v = v1vo}, With = = «— and=" = —.

Shufflgor scattered insertionu v = {uqv1 - - - ugvpugra | k=1, u = ug- - ugltp41, v = v1 - - - Vg },
with LI! = ~ andll’ = ~/.

Scattered deletiani~v = {u1 - - - ugugr1 | k=1, u = ugv1 - - - ug VU1, v = v1 - - - g}, With sl =
I and~~" = ~-.

2.3. Language equations

The process of solving language equations has much in common with the process of solving algebraic
equations. For example the equati&k>L. = R is similar to the equation + a = b, wherea, b are
constants. In both cases, the unknown left operand can be obtained from the result of the operation and the
known operand by using an “inverse” operation. In the case of addition, this role is played by subtraction.
In the case of a binary word operation, which usually is not commutative, the notion of left inverse has
to be utilized. Similarly, the notion of right-inverse will aid in solving equations of the #{& = R,
where the unknown is the right-operand. We recall now a result f8pthat uses the left and right inverse
operations to solve language equations.

1we shall also writaiv for u - v.
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Theorem 2.3. Let L, R C X* be two languages and I&t be a binary word operation. If the equation
X<$L = R (respectively LY = R) has a solution then the languagénax = (R°O!L)¢ (respectively
Ymax = (L7 R9)C) is also a solutionnamely one that includes all the other solutions to the equation

For example consider the case of scattered deletion and shuffle. The fact that the left inverse of scattered
deletion is shuffle and viceversa helps us solve equations of the type

X~L=R, XUL=R.

By Theorem2.3, the maximal solutions to these equations, if they exist Xafex = (R LI L), respec-
tively, Xmax = (R°~L)¢. As REG is closed under scattered delefiolhand shufflg13], these maximal
solutions are regular and can be effectively constructed inR&seegular. Note that the same languages
are also solutions to the inequatiokis~L € R andX II L C R, respectively, as a consequence of the
following lemma, which can be shown using the same arguments as in the proof of TH&8rem

Lemma 2.4. If Sis a solution taX<>L C R (respectivelyL<Y C R) then also(R€<! L)¢ (respectively
(LM RYE) is a solution which includes S

2.4. Channels and error-detection

We recall the concepts of channel and error-detection fidth A channel is a binary relatiopthat
is domain preserving, that ig,C >* x >* and(u, u) isiny for all u € dom(y). The fact thatu, v) isin
y means that the wordcan be received whanis transmitted via the channglIf, moreoveru # v we
say thatv can be received frora with errors. The requirement thais domain preserving ensures that
error-free communication viais possible. A channelis called rational if the relationis rational.

A languaged. is error-detecting foy if no word in L, can be received from a different wordin viay.
More formally, a languagk is error-detecting for a channeliff for all wordsuandvin L, if (u,v) € y
thenu = v.

Remark 2.5. A language is error-detecting foiif and only if it is error-detecting fop .

Next we list a few channels involving substitution, insertion, and deletion (SID) errorsf-2gtor
additional channels of this kind. We note that the subscript ‘s’ indicates scattered errors as opposed to
burst errorg12].

ds(m, 00): consists of all pairgu, v) such thav is obtained by deleting up tm symbols fromu.

1s(m, 00): consists of all pairgu, v) such thawv is obtained by inserting up tm symbols inu.

as(m, 00): consists of all pairgu, v) such thatw is obtained by substituting up ta symbols ofu with
different alphabet symbols. Equivalently, this channel consists of all paitg such thaiu| = |v| and
the Hamming distancé# (u, v) is at mostm.

(0 © 8)s(m, 00): consists of all pairgu, v) such thatv is obtained by performing a total of up to
substitutions and deletions in

(o ©® 1)s(m, 00): consists of all pairgu, v) such thatv is obtained by performing a total of up to
substitutions and insertions in
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3. Code-related properties as solutions to language inequations

Alanguage is said to be auniquely decodab)ecode if every wordw in K* has a unique factorization
overK, that is, there is only one sequence of wotds . . ., w, in K, for somen >0, such thatw =
w1 - - - wy. A language property, say, can be viewed as the set of all languages having that property.
Using this interpretation, many natural code-related properties can be viewed as solution sets to language
inequations involving binary word operations. We provide in the following several examples. The reader
is referred td15] or [5], for instance, for details on codes.

Example 3.1. A languageK is a prefix (respectively, suffix) code ifx € K (respectivelyxu € K)
impliesx = 4, for all wordsu € K andx € 2*. Let P be the “prefix-code” property. TheR is the
solution set of X —,, 1) € X with the constrain € >*. Similarly the “suffix-code” property is
the solution set ofX —;, 1) € X“with X € .

Example 3.2. A languageK is an infix code ifxuy € K impliesx = y = 4, for all wordsu € K and
x,y € 2*. Itis an outfix code ifu1ur € K anduixus € K impliesx = 4, for all wordsuy, uz, x € 2*.
Let P be the “infix-code” property. TheRis the solution setofX = X) € X¢with X € . Similarly,
the “outfix-code” property is the solution set@f — >T) € X¢ with X € >,

Example 3.3. A languageK is a hypercode ifi € v LI * impliesu = v, for all wordsu, v € K. The
“hypercode” property is exactly the solution set(&f 11 *7) € X¢ with X € 7.

The next examples show how certain “error-detection” properties can also be modelled in terms of
solution sets to language equations. 1be a channel. We writ@, for the “y-error-detecting language”
property, that isP, is the class of all languages that are error-detecting.for

Example 3.4. Let y be the channebs(m, 00), i.e., (u, v) € y iff vis obtained fromu by at mostm
deletions. Therp,, the set of all languages which are error-detecting fos exactly the set of solutions
of X;~(J...lU2™) < XS. Indeed, letX € P,. Considerz € x~y with x € X; andy € >t with
ly|<m. We want to showy ¢ X;,. As z is obtained fromx using at least 1 and at most scattered
deletions, it follows thatx, z) is in y andx # z. Hencez ¢ X,. Conversely, supposk satisfies the
inequation buX' ¢ P,. Then there are two different wordsindzin X, such thatx, z) € y. Thisimplies
ze X;~(2...lJ2™) and, thereforeg € X¢—a contradiction. HenceX € P,.

Example 3.5. Lety be aninsertion channgk= i5(m, 00),i.e.,(u, v) € 7iff vis obtained fronuby at most
minsertions. We have that,, the set of all languages which are error-detecting fa exactly the set of
solutionsofX LI(Z | ... J 2™) € X¢, orequivalently, the set of solutions®f LI(X | J ... J 2™) € X§.

4. Using word operations to model channels

Let < be a binary word operation atdbe a language. The pai>, L) plays an important role in the
sequel.
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Definition 4.1. LetL be a language and |€t be a binary word operation.
() The binary relatiori<>L] consists of all pairgu, v) of words such that € u<>L.
(i) The operatior is calledL-rational if [<>L] is a rational relation.

Recall that, for a binary operationC >* x 2* and aword: € 2*, we defined () = {v | (u, v) € y}.

Lemma 4.2. (i) For every binary operatior> and languages K and,lone has thafCL](K) = K<$L.
(i) For every binary operatior> and language. , [¢/L] = [¢L]7L.
(i) For every binary relatiory, there is a binary operatior> and a language L such that= [<L].

Proof. (i) Follows easily from the above definition.

(i) We have(u, v) € [O'L]iff v e ud'L iff u € vOLff (v, u) € [OL]Iff (u, v) € [OGL]™L.

(iii) There are many ways to defirieandL from y. For example, consider the relatién= {(v, u, z) :
z € X*and(u, v) € y}. Theny = [&2*], where<> is the binary operation whose characteristic relation
isB. O

From the examples in Section 3 we understand that there is a close connection between channels anc
pairs of the form(<>, L). For example, the channéd(m, co) is equal to[~(2° U --- U 2™)] and the
channels(m, co) is equal taLI(z° U - - - U ™)]. As L1 is the left inverse of~, the above lemma implies
that the channeis(m, co) is the inverse of the channglm, co). By Remark?2.5, this in turn implies that
a language is error-detecting féy(m, oco) if and only if it is error-detecting fors(m, co).

Next we consider two natural binary word operations related to channels with substitution errors.

Definition 4.3. If u, v € 2* then we define theubstitution in u by @sus<v = {uviuov2. .. ugvrg4+1 |
k>0,u = ujaiuzay ... uparUp4+1, v = V1V2... V%, a;, v; € 2, 1<i <k, a; # v;, Vi, 1<i <k}.

The casé = 0 corresponds to = A when no substitution is performed.

Example 4.4. Lety = gs(m, 0o). ThenP, is the solution set of the inequatidfi<(> | J ... J 2™) € X°.
Moreover, the channel(m, co) is equal tofs<(2° U - - - U Z™)].

Definition 4.5. If u, v € 2* then we define theubstitution in u of asuAv = {u1aiuzaz . . . uraguys1 |
k>0,u = ugviuovy . . . UgVEUgt+1, V = V1V2... Vg, ai, V; € X, 1<i <k, a; # v;, Vi, 1<i <k}.

Lemma 4.6. The operationx is the left-inverse oA.

Proof. Letw € us<v. Thenu = ujausas . .. uparups1, v = v1v2 ... v andw = uqviu2v2 . . . Ug Vglg+1
for someu; € 2*, a;, v; € X, a; # v;, 1<i<k. This means € wAv.

Conversely, leit € (wAv). Thenw = wiviwova - - - wrvrwr+1, v = v1v2... v, andu is equal to
wiaiwaaz - - - wrax w41 for somew; € X*, a;, v; € X, a; # v;, 1<i <k. This meansv € (us<wv). O

By Theorem2.3the equationsXe<L = R, XAL = R have as maximal solutions (if an®max =
(RCAL)C, respectivelyYmax = (R >aL)*.
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The operationg\ ands< have a closer relation when the right operand lsrath-closedanguage. A
languagd. is length-closed if, for every >0, when a word of length is in L then all words of lengtim
are inL. An example of such a languagesi8 U - - - U 3™,

Remark 4.7. For every length-closed language{ A L] = [<L]. Thereforegs(m, oo) = [A(ZPU---U
2™)].

Next we define the right inversesefandA.

Definition 4.8. For any wordst, v € 2* of the same length and with Hamming distari¢é, v) = k,
for some nonnegative integkrut>v is the set of words

biby ... by, b; € 2, 1<i<k,

such thatt = u1a1 - - - ugagurr1, v = u1by - - - urbrug1 and, for alli, 1<i <k, a; # b;.

In other wordsy>v consists of the word b, - - - by, whereby, by, . .., by are the symbols ofthat are
different from the corresponding symbolstofit should be clear that the set-v is empty wheru andv
have different lengths.

Example 4.9.1f Ly = {a"b"|n>1} andLo = {b™|m >1}, thenL1>Lo = b*. (We can only perform
a"b">b%" which givesh”.) On the other hand,»>L1 = a*. Hence, the operatian is not commutative.

Example 4.10. In general, ifL € >* anda € X thenL>a* C a*, L>a* = {a!"I7¥le | w € L}, where
|lwl, is the number of’s occurring in the wordv.

Note that> is the right inverse of«, and the reversed is the right inverse of\. Consequently, by
Theorem2.3, the solutions to the equatiods<Y = R andL>Y = R (if any) areYmax = (L>R)¢,
respectivelyYmax = (R>L)°.

To model more complex channels we need the concept of composition of two word operations. We
shall assume that the symbol *;"is not in the alphabet

Definition 4.11. Given two binary operationg>; and<>,, define the binary operationg>1<») and
(15 <) as follows:

For all wordsu, w, v € 2* w € u(<>1<92)v if and only if w € (u1v1)<>2v2 for some words; andwvz
with v = vivp. Forallwordsu, w € 2* andv € 2*; 2*, w € u(<q; Op)vifandonly ifw € (ud>1v1)<Oov2
for some words)1 andvy with v = v1; vo.

Next we provide some observations concerning the two composition operations.
A languagd. is commutativeif xy € L < yx € L for all wordsx andy.

Proposition 4.12. Let L, L1, L» be languages ovex. The following statements hold true
(i) (LO1L1)<O2L2 = L(O1; $O2) Ly Lo.
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(i) [(©1;<2)L1; L2l = [O2L2] o [&1L1].
(i) [(©1:02) L1; La] = [(Oh; ©))La; La].
(iv) If L is commutative thef(<{1<2)/ L] = [(Gh<)) L.

Proof. (i) Follows easily from the definition of composition.

(i) We have that(u, v) € [(<1;O2)L1; Lo] iff v € (ud1L1)<2L2 iff there is a wordz such that
z € u$1L1 andv € z<$>oLo iff there is a wordz such that(u, z) € [¢&1L1] and (z, v) € [$oLo] iff
(u,v) € [G2L2] o [©1L1].

(iii) We use part (i) and Lemma&.2 [($1; <O2) L1; L] = [(O1;<02)L1; La)™ = [O1L1] 7t o
[G2L2]7 =[O L1] 0 [OhLa] = [(Oh; ) La2; La]

(iv) Similar to the above. O

One can verify that the chann@l © 9)s(m, o) is equal tof(~>) (2% U - - - U 2™)], and the channel
(6 ® 1)s(m, 00) is equal to[ (ALT)(Z° U - - - U 2™)]. Hence, the following result holds.

Corollary 4.13. The inverse of the channeét © §)s(m, o) is (¢ ® 1)s(m, 00); therefore a language is
error-detecting for(e © 6)s(m, oo) if and only if it is error-detecting fofe © 1)s(m, 00).

We note that analogous results for the property of error-correction have been obtajh@ptsing
different tools. Now lety; = as(m1, 00) @ ds(m2, 00) be the channel consisting of all pais, v)
such thatv is obtained fromu using at mostn, deletions and at mosi substitutions. Let, =
as(m1, 00) @ 15(m2, 00) be the channel consisting of all paits v) such that/ is obtained fromu using
at mostmy insertions and at most; substitutions. Then, it follows that

1= [(w; 0 (Z0U - U 272); (20U .- U I,
72 = [(A; I—I)(Zo U-.-u 2™y, (ZO U---U ™).

Corollary 4.14. The inverse of the channek(m1, o0) @ ds(mo, 00) is the channebs(mq, 00) @ 1
(m2, 00); therefore a language is error-detecting for the chanmgl(m 1, oo) ®ds(mo, 0o) if and only if
it is error-detecting foros(m1, 00) ® 15(m2, 00).

5. Closure properties of substitution operations

The closure properties of language families in the Chomsky hierarchy under the operations of scattered
insertion and deletion were first studied[#]. In this section we investigate such closure properties for
the scattered substitution operations, namely\, .

Proposition 5.1. If L and R are languages over the alphalgR a regular oneL AR is the image of L
through a’-free gsm. Moreovethe gsm realizes the relatign R].
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Proof. Let A = (S, 2, so, F, P) be an NFA that recognizes a langudgjever ~. Construct the following
gsmg = (2, 2, S, so, F, P') where

P' ={sa — as|s € S,a € YU {sa — bs'|sa — s' € P,a # b}.
It is clear thatg(uqvy - - - upvrugr1) = {u1a1---ugagurs1 | v = v1---vx € R anda; # v;} and

thereforeg(L) = LAR for any languagé. C >+. Moreover, it follows thatu, u’) is in [AR] if and only
if u’ € g(u), for all wordsu andu’. O

Corollary 5.2. REG and CF are closed undeér with regular languages
Proposition 5.3. There exist two linear languagds, L, such thatl.1A L2 is not context-free

Proof. Let X = {a, b, ¢, d, f, $} and consider the two context-free languages aver
Ly ={a"(bc)"$(df)" |n, m>1},
Ly = {"d"|n>1]}.

Then
(L1AL2) Na*b*$f* = (a"b?'$f¥ In>1)

As CF is closed under intersection with regular languages it followsthatl., is not a context-free
language. O

Corollary 5.4. CF is not closed undef.
Proposition 5.5. CS is closed undet.

Proof. Let L1, L, be two context-sensitive languages o¥end let2’ = {a'| a € 2}, 2" = {d"| a € 2}.
Considerthegsm = (S, 2, 2UY', 5o, F, P),withS = {so} = F, P = {soa — aso, soa — a’sola € X},
that transforms some letters in their primed versions. Consider now the morghishs> 2", h(a) =
a’,aeX,andh’ : XU UX h'(a)=a,h'(d)=ad, h(a") =

We claim thatL1ALy = g'{h'[[g(L1) U h(L2)] N [U,cx 2*a’'a” 2*1*]} whereg’ is the gsmg’ =
(8, 2ux, 2 s, F',PyandS ={s'} = F', P = {s'a — as’la € Z}U{s'a’ — bs'|a # b, a,b € X}.

Indeed, given a word = uqviuova...upviugr1 € Lyandv = vqva...vx € Lo,v; € 2, u; €
2 1<i <k,

[g() LA N[ 2*a'a"3*T*
aeX

produces:1v] vy upvovy . . UgvL U U1

The intersection with((J,.s 2*a’a”2*)* ensures that only words(u) andi(v), wherev is a sub-
word of u, are shuffled, and only words where a primed letter is followed by an identical double
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primed letter are kept. Applying’ to ujvjviuzvyvy ... ugviv/ury 1 erases the double primed letters
producinguaviuzvy . .. uxv ui 1, While g’ replaces every primed letter with a different one, resulting in
u1a1u2day . . . urdgii+1 € uAv, asa; # v;, 1<i <k.

A morphismh is termed &-linear erasing with respect toiff, for eachw € L, |w|<k|h(w)|. Note
thath’ is a 2-linear erasing with respect to the language it is applied to, as it erases at most half of each
word. The proposition now follows as CS is closed uridénear erasing as well as all the other operators
involved. O

Proposition 5.6. If L1, Lo C >*, Lo regular, then LieaL> is the image ofl.1 through ai-free gsm.
Moreover the gsm realizes the relatiga«L>].

Proof. We have that. 1Ly = [L>](L1) = [A'Lo](L1) = [AL2]7Y(L1) = g~ 1(L1), whereg is the
gsm realizing A Lo]—see PropositioB.1 The claim follows when we recall thgt 1 is obtained from
g by simply replacing every productio — bz of g with the productionsb — ar [17]. O

Corollary 5.7. REG CF and CS are closed undet with regular languages
Proposition 5.8. CF is not closed undex.

Proof. Use exactly the same languages and L, as in Propositiorb.3 for the operationA and the
language

(L1<L) N a*c*$d* = {a"c?'$d? | n > 1). O

Proposition 5.9. CS is closed undex.

Proof. Let L1, L be two context-sensitive languages o¥eand let2’ = {a'|a € 2}, 2" = {a"|a € X}.
Construct the gsng = (S, 2,2 U Y, s0, F, P) whereS = {so}, F = {so}, P = {sa — as|a €
2} U {sa — da'sla € 2}. The nonerasing gsm nondeterministically changes some letters into their
primed versions.
Consider now the morphisin: ¥ — 2", h(a) = d”,a € ¥, and the morphism’ : U U Y — ¥
defined ad/'(a) = a,h'(@") = A, W (") =a,a € X.
We claim thatli<L = h'[[g(L1) T (L)1 N [Uq pes.ap(E*a'b" 2917,
Indeed, let us consider a word = ujajusas. .. ugarur+1 € L1andv = vivp...vx € Lo, a; #
v, 1<i<k.
We have that

wUre)Nl | b2
a,beX,a#b

produces words of the forama;viuzasvy . .. ura; v ugi1.
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The intersection Wiﬂ[‘Ua,beZ,a;ﬁb >*a'b" 2*]* ensures that only those worgl&:) andh (v) are shuffled
where each letter of is different from a letter iru, and only those words are kept from the shuffle in
which the letters im(x) and their “different” counterparts are adjacent. The morphisrafterwards
erases all the primed letters and transforms the double primed letters into ordinary ones, resulting in
UTVIUQV2 . . . UL VEUK+1 € UDV.

Note thath’ is a 2-linear erasing with respect to the language it is applied to, as it erases at most half
of each word.

As CS is closed under linear erasing homomorphisms, intersection with regular languages, shuffle, it
follows it is closed also undex. O

Proposition 5.10. If L1, Lo C 2*, L regular, then there exists a gsm g with erasing such gdt;) =
L1>L». Moreover the gsm realizes the relatido- Lo].

Proof. Let Lo be a regular languagd, = (S, X, so, F, P) be a finite automatori,(A) = L. Construct
thegsng = (S, 2, 2, s, F, P)whereP’ = {sa — s'|sa — s’ € P}U{sa — bs'|sb — s’ € P,b # a}.

Theng(L1) = Li>Lo. Indeed, considet = u1a1 ... urarurr1 € L1, v = uibiuzbs ... upbpugyia,
a; # b;, 1<i<k.

The gsmg applied tou works as follows. Rules of the type: — s’ € P erase subwords; that are
common between andv. Rulessa — bs’ wheresb — s’ € P, b # a read the lettera where wordsu
andv differ and replace them with the corresponding letteng in

The fact that the set of final statedHigthe set of final states &, ensures that only words € uv, v €
L, reach a final state. Moreover, it is evident thaiealizes the relatiofi-L»]. O

Corollary 5.11. CF, REG are closed undef with regular languages

Proof. It follows as REG, CF are closed under gsm mappings.

Proposition 5.12. CS is not closed undef with regular languages

Proof. LetL be a recursively enumerable language avand leta, b be different symbols not ia. Then,
[14, p. 89]there exists a CS language such that (i).1 consists of words of the forai bw, i >0, w € L,
and (i) for everyw € L, there is ani >0 such that'bw € L1.

LetY = {c/| c € 2} and2” = {¢”| ¢ € 2}. Consider now the morphistmon X U {a, b} defined by
h(a) =a,h(b) =b,h(c) =cc’ forallc € >.

We claim thatz1(L) = K, where

K = [h(Ll)Da*b(U e 1N (Z7)*
ceX

andhy : ¥ — X" is the morphism defined @g(c) = ¢” for all c € X. We leave it to the reader to verify
that every word irkz1 (L) also belongs t&. Now take a wordv € K. Then there exist words € h(L1),
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v € a*b({J ey cc”)* such thatw € u>v. The wordsu, v are of the formu = a'baiajazdl .. . aa;,
respectively = afbblb/l’bzb/z’ ...byb), for somei, j, m, k>0.

If i # j thenwwould contain lettera or b which contradictaw € (2”)*. Consequently, = j. As |u|
=|v|, it follows thatm = k.

If there would exist KI<k with a; # b; then the wordwv would contain the letteb; € X which
contradictsw € (2”)*. Consequently, for all £/<k, a; = b;. We can easily see now that, following
these considerations, = b{b5 ... b} with bib; ... b € L, and the claim follows.

Itfollows then that the class CSis not closed undevrith regular languages, as this class is closed under
nonerasing morphisms, intersection with regular languages ahds & noncontext-sensitive language
h1(L) will have the same property. (i1 (L) were context-sensitive thdrn which equals the image of
h1(L) through a nonerasing morphism that transforms all double primed letters into normal ones, would
also be context-sensitive.)

Proposition 5.13. The family CF is not closed under.

Proof. LetX = {a, b, ¢, ¢, f, g, x, v, z} and consider the languages
L1 = {(ax)'(by) (c)*| i,k=0}, Lz = {(ex)'(fy)"(g2)"| 1, m>0}.
Then[(ax)! (by) (c2) r>(ex) (fy)"(gz)™]1 N e* f*g* = {e' fig'|i >0} which is not context-free. O

6. Error-detection and the inequation XL € X€ with X C M

The examples provided in Sections 3 and 4 reveal the following pattern: many natural code-related
properties can be reduced to the property of error-detection by varying the channel involved. At the same
time, for many channels the property of error-detection can be studied via the inequation

XOL C XCwith X € M (%)

by varying the operatod> and the languagdsandM. More specifically, consider the case where the pair
(<, L) satisfies the condition

Forallu € 2*,u ¢ u$&L andu € udi C(, L).

When condition €, L) is satisfied, the relatior>L ] is a channel and it follows that a language is
error-detecting fof$ L, ] if and only if it is a solution of(x) with M = X*. With this interpretation of the
inequation(x), we have that a language is a prefix code (respectively, suffix, infix, outfix, hypercode) if
and only if it is error-detecting for the chanrel—,, ~*] (respectivel%—ﬁq 2%, [= 2*], [— 2*],
[LIZ*]).

Definition 6.1. Inequation(x) is of type(c), if condition Q<>, L) is satisfied.

In this section, we provide some observations and obtain general statements about the solutions of the
inequation(x) which are meaningful to error-detection, hence also to the code properties reducible to
the error-detection property. In particular, in Coroll&y we obtain a characterization of the maximal
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solutions of a type (c) inequation, which yields a method for deciding whether a given regular solution
is maximal—see Propositiodi14and the discussion following that proposition. A consequence of this
result is that one can use the same method to decide whether a given regular prefix code, or suffix code,
or infix code, or error-detecting language is maximal because each of these code properties is definable
via an inequation of type (c), as shown in Sect®n

An important concept in our considerations is the residue of a solution.

Definition 6.2. Let Sbe a solution ofx). Theresidueof Sis the languagé/ — (S U SGL U SOIL).

Proposition 6.3. (i) If S is a solution ofx) then every subset of S is also a solutioni=0f
(ii) Every solution of %) is included in a maximal solution ).
(iii) If the equation(x) is of type(c) then{w} is a solution of(x), for every word win M

Proof. (i) Let S1 be a subset dband letw be a word inS1<$L. As S1<$L is a subset o§<L, it follows
thatw € §¢, hence alsow € 7.

(i) Let P be the solution set af) and letS = {S; : i € I} be any totally ordered subset®Bf\We show
that the upper bound),.; S; of S is a solution ofx) as well; then the claim follows by Zorn’s lemma.
Letz € sOu forsomes € |J S; andu € L. Thens € §;, forsomej € 1. Ifalsoz € | S; thenz € §; for
somei € I.Letk = max{i, j}. Thenz, x € S and(Sx<OL) () Sk # ¥, which contradicts the fact thay,
is a solution of(x).

(iii) Obvious. O

The following is based on the proof of Theorén3.
Lemma 6.4. For any language<, Y, Z and for any binary operato®,

XOY CZ & X C(Z9OY) o ¥ C (X Z9°.

Proof. We consider only the first equivalences” Let x € X, but suppose € Z¢$!'Y; thenx e ro'Y
for somer € Z¢, which impliest € x$Y andr € XY C Z; a contradiction.
“&” Let z € x$Y, for somex € X, but suppose € Z¢. Thenx € zO'Y € Z6OHY . As (Z2601Y) €
X¢, x € X¢; acontradiction. O
Corollary 6.5. (i) EqQ. (%) is equivalent to
XO"X C L withX S M (k)
which in turn is equivalent to

XX Cdoma(<¢) — L with X € M.

(ii) A language is a solution af) if and only if it is a solution of<! L € X with X € M.
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Proof. XL C X€ is equivalent tal. € (X< X)¢ which is equivalent toX$"' X € LE. As im (&) =
dom (<), X< X € domy(<>) and the claim follows. The second part can be shown analogously.

Proposition 6.6. Let S be a solution af«).
() If the residue of S is emptthen S is a maximal solution ¢f).
(i) If (%) is of type(c) and the solution S is maximdhen the residue of S is empty
(i) If (x) is of type(c), thenS U {w} is a solution of(x) for every word w in the residue of S

Proof. (i) AssumeM C S U SSGL U SOLL, but suppose there is € M — S such thatl = SU {w} is a
solution of (). Aswis not inS at least one of the following holds.

(@) wis in SGL. In this casew € z<$L for somez € S, which impliesz € wolL = z € TOL =
ze€ T = z ¢S, acontradiction.

(b)wisin SG!L. Inthis casew € z<! L for somez € S, whichimpliesz € TOL = z € T¢ = z & S,
a contradiction.

Hence,Smust be maximal.

(i) This is a consequence of (iii), which we prove next.

(iii) Assume (%) is of type (c) and consider any word € M such thatvis notinS U SGL U SOUL.
LetT = S U {w}. We show thal'<>L C T¢. Letz € T<$L. We consider two cases.

(8)z € SGL. AsSis a solution of(x), z ¢ S. Also, if z = w thenw € SOL, which contradicts our
choice ofw. Hencez ¢ S U {w}.

(b) z € wOL. Thenw € zO!L. If z € S thenw e SO!L, which is impossible again. Henceg S. If
z = w thenw € w<L, which contradicts condition (c). Hence# w. It follows againthat ¢ 7. O

Corollary 6.7. LetS be a solution to aninequation of tyjoe Then S is maximal if and only if the residue
of S is empty

Corollary 6.8. If S is a solution of the equatioki<>L = M — X, then S is a maximal solution 6f).
Proposition 6.9. If S is a solution of the inequatioK<>X C R with X € M, then also each of the
languages

M m (RCOIS)C m ((RC<>IS)C<>VRC)C
and

M m (S<>rRC)C m (RC<>1(S<>I‘RC)C)C
is a solution, which includes. S
Proof. AssumeS is a solution of the given inequation and Rtbe the languagérc<! $)¢. As Sis a

solution of XS C R, one has that alsB is a solution which includeS. Hence,P<>S € R. Now this
implies thatSis a solution of the inequatioR<$Y C R; therefore, also the languag®@<>” R)¢, call it
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Q, is a solution which includeS. Hence,P<>Q C R and, ag(P N Q)<>(P N Q) is a subset ofP<Q,
it follows that the languag® N Q satisfies the inequatioki< X C R. As every subset of N Q also
satisfies this inequation, we have th&at P N Q is a solution ofX&X € R with X € M. The statement
about the second language can be shown analogously.

Definition 6.10. LetL be a language. The setleft (respectivelyright) quotients of L with respect &
is the set of languages of the forby! W (respectivelyW <’ L), whereW is a subset of*.

Using the factthatt N B¢ = A — B, for any language& andB, Propositior.9implies the following,
where an expression of the forbi — A — B is shorthand foM — A) — B.

Corollary 6.11. If S is a solution of the inequatioki<>X < R with X € M then there is a left quotient
P, and a right quotient?, of R with respect ta> such that each of the languagég— P, — (P <" R€)
andM — P, — (R} Pf) is also a solution which includes S

Using the above results and the fact thdt = </, for all binary operations>, also the following
holds true.

Corollary 6.12. Every maximal solution of) is of the formM — P, — (Pf<L) and of the form\ —
P, — (PSOL), where P, and P, are left and right respectivelyquotients of L with respect &’

We are interested in algorithms whose input involves equations of the(fgrrivore specifically, we
shall assume thatr) is such thak> is L-rational andM is regular. In this case, the equation is given
effectively by a finite transducer realizifigrL] and a finite automaton acceptiivy

The following result provides a uniform polynomial time algorithm for deciding properties of regular
languages that are definable via an equation of the faymFor the proof of this and other results
involving constructions and sizes of automata and transducers, we shall use the following notation—see
also[17,11]

Notation Let A andB be two trimA-NFAs and lefT be a trim transducer (in standard form).

A N B is atrimA-NFA of size O (J]A||B|) accepting the languade(A) N L(B).

A U B is atrimA-NFA of sizeO (]A| + |B]) accepting the languade(A) U L(B).

If AandB are DFAs them LI B is a trim DFA of sizeO (|A|| B|) accepting the languadg A) U L(B).
If Ais a DFA thenA€ is a trim DFA of sizeO (]A]) accepting the language(A)°.

A is a trim A-NFA accepting the language(T)(L(A)) = {z € 2* | (w,z) € R(T), w € L(A)}.
T-1is a trim transducer of siz& (|T|) realizing the relatiorR (7).

Proposition 6.13. The following problem is decidable in time
O(|A]?|T| + |Al|B)).

Input A trim A-NFA A a DFA B, and a trim transducer Tin standard form realizing [<>K ], for some
binary operatiorK> and language K
Output Y/N depending on whethdr(A) is a solution ofX$>K C X€ with X C L(B).
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Proof. Testing whethef.(A) C L(B) is equivalent to testing wheth&A)NL(B)¢ = @. Thisis possible
when we construct the automatdnn B¢ of size O (|A||B]), and test whether there is a path from the
start state to a final state, which takes time linear with respect to the graph of the automaton using depth
first search, for instance.

Now consider the problem of deciding whethefA)<$K is a subset of.(A)¢. By Lemma4.2, this
is equivalent to testing wheth@>K1(L(A)) € L(A). As the relation<>K] is realized byT, one has
that[GK](L(A)) = L(Ar). Hence, the problem is whethér A7) N L(A) is empty. As before, one
constructs the automatoty N A of size 0 (|A|2|T|) and tests whether there is a path from the start state
to afinal state. O

The assumption thaB is a DFA as opposed to &NFA is essential as, otherwise, computing the
complement of &-NFA requires to convert it to a DFA, which in general would be of exponential size.
In practice, however, the automatBrand possibly the transduc€&rare fixed and, therefore, not part of
the input. In such cases the algorithm would require t®igA|2|T'|), or simply O (]A|?) whenT is fixed.

Proposition 6.14. The following problem is computable

Input: A A-NFA A a A-NFA B, and a transducer T realizing>K ], for some binary operatior> and
language Ksuch thatL (A) is a solution ofX<>K C X¢ with X C L(B).

Output A 2-NFA accepting the residue @f(A).

Proof. Consider the language
W = L(A) U L(A)OK UL(A)'K.

By Lemma4.2, Wis equal toL(A) U [¢K1(L(A)) U [GK1L(L(A)). As T realizes the relatiofd>K |
andT 1 realizes the relatiofx>K |1, the problem can be solved if we first construct thFA C =
AU A7 U Ar-1 accepting the languad®, and then construct theNFA B N C¢ accepting the language
L(B) — W, which is equal to the residue &f(A). O

A consequence of the above is that one can decide whether the given sdlutipis maximal by
testing whether the residue & A) is empty, provided the equation is of typ®—see Corollar.7.
Moreover, the examples in Secti@rimply that one can decide whether a given regular prefix code, or
suffix code, or infix code, or error-detecting language is maximal.

In the proof of the preceding proposition, everiifs a DFA the automatod 7, or A-1, might be
a A-NFA. In this case, computing“ would require to conver€ to a DFA. Thus, the above algorithm
might require exponentially many steps. On the other hand, one hopes that when the given transducer is
of a certain particular type (or even fixed), the residue of a solution can be computed in polynomial time.
This possibility is explored in the next section.

7. Special cases and applications

7.1. Languages with finitely many quotients

Recall that, by Corollarg.5, the inequationX<>L) C X¢, (%), is equivalent ta X< " X) C L¢. We
want therefore to be able to solve inequations of the farnX C R, for a given languag® C >* and
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unknownX. In [9], it is shown that if both the sets of left and right quotientsR6fwith respect tad> are
finite one can identify all the maximal solutions of the equatishX = R. The same argument can be
applied also for solving the inequatidh®> X € R. Here we improve this result by showing how to identify
all the maximal solutions of our inequation when one of the quotient sets is known to be finite. Indeed,
suppose that the set of left quotientsrRsfwith respect ta> is finite: P, ..., P,. According to Corollary
6.11, the following method would produce all the maximal solutions of the inequaioX < R with
X C M:
(i) Foreachi = 1,...,n, letT be the languag®® N (PR If TOT is a subset oR then add

T N M in the list of solutions.
(i) Remove from the list any solutions that are proper subsets of other solutions.
It should be clear that, if the set of right quotientsRsfis finite, then we can use a similar method for
producing all the maximal solutions of our inequation. As an example, consider the insertion operation.
Recall that the right inverse of insertion is the operation of reversed dipolar deletion, and the left inverse
of insertion is deletion. Moreove7,8] for every regular languadethere exist finitely many languages
that can be obtained frofby dipolar deletion, and finitely many languages that can be obtainedqrom
by deletion. This implies that the sets of left and right quotients wfith respect to insertion are finite.
Hence, the above method can be applied to solve the inequatier- X C R with X € M whenRis
regular. For example, consider the inequation

X =/ {aa) C X°.

Using the facts=>'=<«—" and="=<«—,we can verify that the s¢faa} = W | W C 2*} consists of all
the right quotients o£~"” and is equal to the set of all subset$fa, aa}. Moreover, for each such quotient
P,, say, we can compute the sgt— P, — ({aa} — Pf), which is equal t&* — P, — ({aa} = Pf)
using the facte''=<="". This process produces two maximal sé¢ts,aa}‘ and{/, a}¢, which are the
maximal solutions of the above inequation—see Coroltaiy.

7.2. Finite operations

A binary operation idinite if its characteristic relation is finite. Finite operations can be obtained by
restricting the domain of other operations that are infinite, in general.

Example 7.1. For any positive integem, let (— ), be the restriction of— ,, as follows:(w, u, v)

is in the characteristic relation ¢f—,,), if and only if it is in the characteristic relation ef—,, and
lu|<n and|v| > 0. Then dom(— ), is equal toX U --- U X". Moreover the solution set of the
inequationX(—nq)nZﬂL C X¢with X C YU - ..U X" is the set of all prefix codes whose longest word
is of length at mosh.

Example 7.2. For any positive integensandmwith n > m, lete<, , be the restriction ai as follows:
(w, u, v) is in the characteristic relation e, ,, if and only if it is in the characteristic relation ef and
lu| = n andm > |v| > 0. Then dom (=<, ) IS equal toX U - - - U 2. Moreover the solution set of the
inequationXs<y, ,, 2+ C X¢ with X C 2" is the set of all subsets af* that are error-detecting for the
channebg(m, 00).
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In the above examples, the inequati®>L. C X¢ with X € M is such that dom(<$) C L. By
Corollary6.5, such an inequation is equivalent to the equation

XX =0 with X € M. (3 % %)

When the operatio®> and the seM are finite there is an algorithm to test whetlter %), hence also
(%), has a solution of cardinalitlg for some giverk > 1—the operatior> is given as input by simply
listing the elements of .. The problem, however, is NP-complete.

Proposition 7.3. The following problem is NP-complete

Input: a finite operatiork>, a finite language M and a positive integer k

Output Y/N, depending on whether the equatidh>X = ¢ with X < M has a solution of
cardinality k

Proof. Firstly, we note that the problem is in NP. Now supp@se the alphabet of the problem. We shall
reduce to this problem the following NP-complete problem.

Input: a graphG and a positive integek.

Output: Y/N, depending on wheth&rhas a clique ok vertices.

Let G = (Vg, Eg) andk constitute an instance of the clique problem, whégeis the set of vertices
and Eg is the set of edges. Supposg = {1,...,m}, for somem>1, wherev denotes theX|-ary
representation of the integeusing symbols front. Define the finite operatiof»; whose characteristic
relation consists of all triple§l, iz, v) with u, v € Vi andiz # v and(i, v) is not an edge itEs. Then
the graphG has a cliqueC of k vertices if and only ifC is a solution of the equatioF < g X = ¢ with
X C Vi. Thisfollows by the definition of>¢ and the fact that, for every binary operatidorand language
S SOS =¢ifandonlyif(s,7) ¢ dom($) forallsandtin S, O

7.3. Decidability of maximality

We discuss now the problem of deciding whether a code of a certain type is maximal using the ideas
developed in Propositio6.6.

The residue of a prefix cod&see Exampl8.1) is >+ — (SUS —,, 2T US2™) and can be computed
in time O(]A]), whenSis given by a trim DFAA. This can be done as follows. First, construct a DFA
B of size O(|A|) such thatL(B) = Sx*. This is possible by adding i a new stat@, which would be
the only final state oB, and transitiong'a — g for everya € X and for every (old) final stateof g. As
L(A) is a prefix code, the automat&would be a DFA. Now leC be the DFA, of sizeD (|A|), obtained
from B by making all states d8 final. Then, it follows that.(C) = SU (§ —,, ZT)U S2T.AsCisa
DFA, we can construct the automatdrg+ N C¢ in time O (|A|), whereA 5+ is the two-state automaton
acceptingz™. The claim follows now, ad.(Ay+ N C¢) is the residue of S. Hence, we have shown the
following consequence of Propositiérb.

Corollary 7.4. The following problem is decidable in linear time
Input: a DFA A
Output Y/N depending on whether the languafjéA) is a maximal prefix code
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We now turn to the problem of whether a givénite suffix (respectively, bifix, infix) cod&is a
maximal suffix (respectively, bifix, infix) code. As [8], we assume that the co&as given by listing
the words comprising and, therefore, the size & which we denote by S|, is equal to) _,, ¢ |u]. In
our discussion, thtie Ty of the finite languag& plays an important role. This is the trim DFA

({[p] 1 p e Pref(9)}, 2, [2], {[s]|s €S}, P)

acceptingS[3], whereP = {[pla — [pal | p € Pref(S), a € X, pa € Pref(S)} and Pref(S) is the set

of all prefixes ofS. Note that each stafe] represents the prefixof the input word that has been read so

far by the automaton. We shall use the following facts about [e&he alphabet is considered fixed

in our paper):

e GivensS the trieTys is of sizeO (|| S|) and can be constructed in tind&(||S||).

e GivensS, one can use the trig; to construct a trim DFAD, of sizeO (]| S|)), in time O (]| S||) accepting
the language™S. The DFA Dy is called the dictionary-matching automatonSof

First suppose&Sis a finite suffix code. Then the sét consisting of the reverses of the wordsSiis a

prefix code. MoreovelSis a maximal suffix code if and only i’ is a maximal prefix code. Hence, to

test whetheBis a maximal suffix code, one constructs the ffieand tests whethdi(T/) is a maximal

prefix code using Corollary.4. Now suppose thaiis abifix code—this is a code that is both prefix and

suffix. By [1], Sis a maximal bifix code if and only if it is a maximal prefix code and a maximal suffix

code. Hence, the following holds.

Corollary 7.5. The following problem is decidable in linear time
Input: a finite language S
Output Y/N depending on whether S is a maximal sufiixbifix, code

Consider now the case whesas a finite infix code. The residue &is
(SUS=3TUS « 3T
=SUS=XTUSUIT «— 9)°
= =IFUX" <« 9)°
= (Fact(S) U 2*Sx%),

where Facts) is the set of all factors db. GivenS, one can construct the factor automafgnof Sthat

accepts the language F&s). This automaton is a minimal DFA of size(|| S||) and can be constructed

intime O (]| S| [3]. We also need to construct a Dy accepting the languag& S>*. For this, consider

the dictionary-matching automatdpy. This has the same states as theTkieloes, the same final states,

and includes all the productions @§. In addition, for each statg] of Ds and for each symbal € %,

if there is no production of the foriipla — [pa] in Ty then we add inDg the productiorfpla — [u]

whereu is the longest suffix opathat is also a prefix o6 (hence[«] would be a valid state dfs and

Dyg). To obtain the desired DFAs we modify slightly the construction dbg from Ty as follows:

e Add the new productionpla — [u] as specified above, unlefgs] is a final state.

e Add an extra final stat& in Eg and the production&a — G, for all @ € ~. Moreover, for every
(existing) final stat¢w] and for every symbat € ¥, add the productiofw]a — G.

We argue now thaL (Eg) = X*S>*. First consider any word in X*S>*. This word can be written as

xy with x € 2*S. Thus, there is a successful computation of the automBtpan x which involves the
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sequence of stat€éso], [u1], ..., [u,], say, whereig = 1. Let[u;] be the first occurrence of a final state
of Dg in the above sequence of states, and le¢ the computation abg corresponding to the sequence
[uol, ..., [ur]. In this computation the automaton reads a prefiof x and, thereforex is of the form
x1x2. By the construction oFg, ¢ must be a computation dfs as well and, agu;] is a final state, the
word x2y will be accepted byEs when[u,] is used as the start state. Heneggoy would be accepted
by Es when[2] is used as the start state.

Now consider a word in L(Es). There is a computation df'g that involves a sequence of states
q0, 91, - - - » gn With go = [1]. Moreover, there is a unique statethat is a final state obgs such that all
stateso, ..., g; are different fromG and, ifi < n, all statey;+1, ..., g, are equal tds. Then in the
computatior, say, that corresponds to the stages. . ., ¢; the automaton reads a prefix of z. But ¢
is also a computation dDg which implies thatv; € 2*S and, thereforez € *S2* as required.

We return now to the original question of computing the residu8&. éfccording to the above, the
residue ofSis the language accepted by the automaieyLl E)¢, which is of sizeO (|| S||2). Hence, we
have shown the following.

Corollary 7.6. The following problem is decidable in quadratic time
Input: a finite language S
Output Y/N, depending on whether S is a maximal infix code

We conclude the paper with the following consequence of Corolaty

Corollary 7.7. The following problem is decidable in tinte(||C|| log || C|)).

Input: Fixed-length code C that is error-detecting for the chamgl, co).

Output Y/ N, depending on whether C is a maximal subset’ofith the property of being error-detecting
for the channebs(1, co), where n is the length of the words in C

Proof. By Example4.4, the above problem is equivalent to deciding whether the sol@ioh
XX C X with X C 3"

is maximal, and by Lemmé.6and Remark. 7, the residue of the solutidBis equal ta” — C<(20U 3).
Moreover, ag’>(2°U ) C 3" it follows thatC is maximal if and only if the cardinality af=(2° U )
isq", whereg = |X].

Now note that, ifC is maximal, then it must be the case th@t+ |C|(g — 1)n >¢". This follows from
the fact thatCs<(2% U %) is equal toC U (Uyec we=2) and the cardinality of eacly< is (g — D)n.
This implies that, ifiC|(1 + (¢ — D)n) < ¢", thenC is not maximal. Based on these observations, we
have the following decision procedure.

(i) Letn be the length of the words i@ and letq be the cardinality of the alphabet.

(i) If |[C1(1+ (g — Dn) < ¢" then outpuiN and quit.

(i) Initialize a set of wordsSto C and a counter t¢C|.

(iv) Foreachwordvin C, compute thég — 1)n words ofws<X and insert them is. Moreover, increment
the counter by one each timenawword is inserted irS. If the counter becomeg’ outputY and
quit.

(v) OutputN.
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Obviously, the worst case time complexity of the algorithm is dominated by steps 3 and 4. We can
implementS as a trieT, which is initialized to7¢c. The cost of inserting a word of lengthin a trie is
©®(n). Hence, the cost of steps 3 and 4 is

O(ICI) + 6(C| x (¢ = Dn x n),

which is equivalent t@(||C|| (g — 1)n) using the fact thatC|| = n|C|. Also, in these steps we have that
q"<|C|(1+ (g — Dn), which implies

q"<|Clgn = ¢"*<||Cll = n — 1< log, ||C]|

and the claim of the corollary is established.
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